通过化学预处理和机械处理的方法制备出甲壳素纳米纤维,再利用真空抽滤的方法制备出甲壳素纳米纤维膜,将所得的纳米纤维素浸渍到聚醚砜树脂中,制备了甲壳素纳米纤维/聚醚砜复合薄膜。采用场发射扫描电镜(FE-SEM)对机械处理的甲壳素纳米纤维的形态特征进行表征。采用紫外光分光光度计、热机械分析仪(TMA)分别对甲壳素纳米纤维/聚醚砜复合膜的透光性、热膨胀性做分析,用万能力学试验机测试甲壳素纳米纤维/聚醚砜复合膜的拉伸性能。结果表明,机械处理后,甲壳素纤维达到纳米级别,随机械处理手段增加,甲壳素纳米纤维直径逐步变小。甲壳素纳米纤维/聚醚砜复合薄膜保持了较高的透光率,对比树脂材料,热稳定性和力学强度明显增强,是一种具有高透光性、低热膨胀性的复合膜,在光学基底材料、显示器等方面具有较大的应用潜力。
Chitin nanofibers were prepared by chemical pretreatment and mechanical treatments. The obtained nanofiber solution formed films through vacuum filtration, and then they were impregnated into polyether sulfone (PES) resin to prepare the chitin nanofibers/PES composite films. The morphology of the nanofibers was characterized by field emission electron microscopy (FE-SEM). The light transmittance and thermal expansion properties of the chitin nanofiber/PES composite film were investigated by UV-visible spectrometer and thermomechanical analysis. The tension properties of the chitin nanofiber/PES composite film were tested by a universal materials mechanical testing machine. The results showed that the diameter of the chitin fibers reached the nanometer level, and with the combination of the mechanical processing method, the diameter of the chitin nanofibers gradually decreased. Chitin nanofiber composite films maintained high light transmittance, and compared with the resin matrix, their thermal stability and mechanical strength were apparently enhanced. Chitin nanofiber composite films possess high light transmittance and low thermal expansion, which have potential applications in optical substrates and displayers.
[1] Abe K, Iwamoto S, and Yano H. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood[J]. Biomacromolecules, 2007, 8(10): 3276-3278.
[2] Hubbe M A, Rojas O J, Lucia L A, et al. Cellulosic nanocomposites: A review[J]. Bioresources, 2008, 3(3): 929-980.
[3] Zeng J, He Y, Li S, et al. Chitin whiskers: An overview[J]. Biomacromolecules, 2012, 13(1): 1-11.
[4] Wang B, Sain M, & Oksman K. Study of structural morphology of hemp fiber from the micro to the nanoscale[J]. Applied Composite Materials, 2007, 14(2): 89-103.
[5] Chen W, Yu H, Liu Y, et al. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments[J]. Carbohydrate Polymers, 2011,83(4): 1804-1811.
[6] Abe K, Yano H. Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber[J]. Cellulose, 2009, 16(6): 1017-1023.
[7] Eichhorn S J, Dufresne A, Aranguren M, et al. Review: Current international research into cellulose nanofibres and nanocomposites[J]. Journal of Materials Science, 2010, 45(1): 1-33.
[8] Nogi M, Iwamoto S, Nakagaito A N, et al. Optically transparent nanofiber paper[J]. Advanced Materials, 2009, 21(16): 1595-1598.
[9] Uddin A J, Fujie M, Sembo S, et al. Outstanding reinforcing effect of highly oriented chitin whiskers in PVA nanocomposites[J]. Carbohydrate Polymers, 2012, 87(1): 799-805.
[10] Chen J, Loo L S, Wang K. Enhanced mechanical properties of novel chitosan nanocomposite fibers[J]. Carbohydrate Polymers, 2011, 86(3): 1151-156.
[11] Liu T, Qian L, Li J, et al. Homogeneous synthesis of chitin-based acrylate superabsorbents in NaOH/urea solution[J]. Carbohydrate Polymers, 2013, 94(1): 261-271.
[12] Gopalan N K, Dufresne A. Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior[J]. Biomacromolecules, 2003, 4(3): 657-665.
[13] Noh H K, Lee S W, Kim J M, et al. Electrospinning of chitinnanofi bers: Degradation behavior and cellular response to normal human keratinocytes and fibroblasts[J]. Biomaterials, 2006, 27(21): 3934- 3944.
[14] Fan Y, Saito T, Isogai A. Preparation of chitin nanofibers from squid pen β-chitin by simple mechanical treatment under acid conditions[J]. Biomacromolecules, 2008, 9(7): 1919-1923.
[15] Ifuku S, Nogi M, Yoshioka M, et al. Fibrillation of dried chitin into 10-20 nm nanofibers by a simple grindingmethod under acidic conditions[J].Carbohydrate Polymers, 2010, 81(1): 134-139.
[16] Shams M I, Ifuku S, Nogi M, et al. Fabrication of optically transparent chitin nanocomposites[J]. Applied Physics A, 2011, 102(2): 325-331.
[17] Ifuku S, Nogi M, Abe K, et al. Preparation of chitin nanofibers with a uniform width as α- chitin from crab shells[J]. Biomacromolecules, 2009, 10(6): 1584-1588.
[18] 董炎明, 阮永红,王锦山, 等. β-甲壳素/壳聚糖纳米级微粒的制备 初步研究[J]. 厦门大学学报: 自然科学版, 2003, 42(1): 128-129. Dong Yanming, Ruan Yonghong, Wang Jinshan, et al. Studies on nano-crystal particles of β-chitin/chitosan[J]. Journal of Xiamen Univeristy: Natural Science, 2003, 42(1): 128-129.
[19] 菅瑞娟. 甲壳素及其衍生物-淀粉复合材料制备与应用[D]. 天津: 天 津大学, 2011. Jian Ruijuan. Preparation and application of chitin and its derivative - starch composites[D]. Tianjin: Tianjin University, 2011.
[20] Yang A, Wu R. Mechanical properties and interfacial interaction of a novel bioabsorbable chitin fiber reinforced poly(ε-caprolactone) composite[J]. Journal of Materials Science Letters, 2001, 20(11): 977- 979.
[21] 魏静, 万玉芹, 王鸿博. 甲壳素纳米晶须/聚乳酸复合纤维膜的制备 及表征[J]. 化工新型材料, 2012, 40(11): 68-70. Wei Jing, Wan Yuqin, Wang Hongbo. Preparation and characterization of chitin nano-whisker/poly (lactic acid) composite fiber membrane[J]. New Chemical Materials, 2012, 40(11): 68-70.