研究论文

太阳风起源区等离子体动力学机制

  • 黄伟 ,
  • 王华军 ,
  • 邹茜
展开
  • 1. 成都理工大学地球物理学院, 成都 610059;
    2. 贵阳学院数学与信息科学学院, 贵阳 550005
黄伟,副教授,研究方向为计算机仿真,电子信箱:39189550@qq.com

收稿日期: 2013-05-28

  修回日期: 2013-11-11

  网络出版日期: 2014-01-15

基金资助

贵州省自然科学基金项目(2013-2017);贵阳市人才培养计划项目(2012HK-209-22)

Dynamics of Solar Wind Origin Area Plasma

  • HUANG Wei ,
  • WANG Huajun ,
  • ZOU Qian
Expand
  • 1. College of Geophysics, Chengdu University of Technology, Chengdu 610059, China;
    2. College of Mathematics and Information Science, Guiyang University, Guiyang 550005, China

Received date: 2013-05-28

  Revised date: 2013-11-11

  Online published: 2014-01-15

摘要

根据太阳风的起源,对太阳风的等离子体动力学理论进行研究。对磁流体力学(MHD)做了详细概述,在此基础上讨论稳定态下的震波结构,并进行详细的公式推导,特别是对它的不连续结构与旋转不连续的性质进行说明。通过对卫星观测结果的分析,得到两种磁场方向不连续面:切向不连续(TD)和旋转不连续(RD)。研究表明,TD的特性为垂直不连续面的磁场分量为零,电离子不通过该面;RD两侧的磁场方向不同但是大小相同,且有电离子通过该不连续面。太阳风中旋转不连续面主要与高速太阳风有关。通过分析6种不连续结构得到:在通过界面的磁通量保持不变的情况下,切向磁场会任意改变方向,出现旋转不连续现象,且此现象能够通过一维空间结构图方法加以验证。通过对比推导结果与数据验证图,发现数据图的分析支持公式的推导,证实太阳风起源区等离子存在旋转不连续机制。

本文引用格式

黄伟 , 王华军 , 邹茜 . 太阳风起源区等离子体动力学机制[J]. 科技导报, 2013 , 31(36) : 59 -63 . DOI: 10.3981/j.issn.1000-7857.2013.36.010

Abstract

This paper discusses the dynamics of the solar wind plasma based on solar wind origins. The MHD (Magnetohydrodynamics) and its formula derivation are reviewed, especially its features of discontinuous structure and rotation discontinuity, as shown by one dimensional space structure diagrams. By analyzing the satellite detection results, it is found that there are two magnetic field direction discontinuity surfaces: one is a tangential discontinuity (TD), and the other is a rotation discontinuity (RD). It is shown that for the TD, the magnetic-field component of the vertical discontinuity surface is zero and the electricity ions do not go through the surface. While the bilateral magnetic field directions of the RD are different, the size is the same and the electricity ions go through the discontinuity surface. It is observed that the rotation discontinuity surface in the solar wind is mainly related with the high-speed solar wind. The magnetic flux through the interface remains unchanged, the magnetic field in the tangential direction can change along any direction, therefore, the rotational discontinuity can be observed. By conparing the derivation results with the data verification diagrams, it is shown that the data diagram analysis supports the derivation of the formula and then proves the system of the rotation discontinuity of the solar wind origin area plasma.

参考文献

[1] Spasojevi'c M, Frey H U, Thomsen M F, et al. The link between a de-tached subauroral proton arc and a plasmaspheric plume[J]. Geophys Res Lett, 2004, 31(4): 1521-1532.
[2] Schunk R W, Scherliess L, Sojka J S, et al. Global assimilation of iono-spheric measurements (GAIM)[J]. Radio Science, 2004, 39(1): 1033-1041.
[3] Schäfer S, Glassmeier K H, Eriksson P T I, et al. Spatial and temporal characteristics of poloidal waves in the terrestrial plasmasphere: a CLUS-TER case study[J]. Annales Geophysicae, 2007, 25(4): 1011-1024.
[4] Pierrard V, Cabrera J. Dynamical simulations of plasmapause deforma-tions[J]. Space Science Reviews, 2006, 122(1-4): 119-126.
[5] Chen S H, Moore T E. Magnetospheric convection and thermal ions in the dayside outer magnetosphere[J]. Journal of Geophysical Research, 2006, 111(1): 865-877.
[6] André N, Lemaire J F. Convective instabilities in the plasmasphere[J]. Journal of Atmospheric and Solar-terrestrial Physics, 2006, 68(2): 213-227.
[7] Parker E N. A quasi-linear model of plasma shock structure in a longitu-dinal magnetic field[J]. Journal of Nuclear Energy, 1961, 2(1): 146-158.
[8] Peng Q Y, Vienne A, Lainey V, et al. New evidence of precision premi-um for Galilean satellites from CCD imaging[J]. Planetary and Space Sci-ence, 2008, 56(2): 1807-1811.
[9] Zurbuchen T H, Richardson I G. In situ solar wind and magnetic field signatures of interplanetary coronal mass ejections[J]. Space Science Re-views, 2006, 123(3): 31-43.
[10] Fisk L A, Schwadron N A, Zurbuchen T H. On the slow solar wind[J]. Space Science Reviews, 1998, 86(1-4): 51.
[11] Cranmer S R, Ballegooijen A A V, Edgar R J. Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrody-namic turbulence[J]. The Astrophysical Journal Supplement Series, 2007, 171(2): 520-551.
[12] Goossens M, Terradas J, Andries J, et al. On the nature of king MHD waves in magnetic flux tubes[J]. Astronomy and Astrophysics, 2009, 503(1): 213-223.
[13] Hartle R E, Sturrock P A. Two-fluid model of the solar wind[J]. The Astrophysical Journal, 1968, 151(2): 1155-1167.
[14] lonson J A. Resonant absorption of alfvenic surface waves and the heat-ing of solar coronal loops[J]. The Astrophysical Journal, 1978, 226(1): 650-673.
[15] Li B, Habbal S R, Li X, et al. Effect of the latitudinal distribution of temperature at the coronal base on the interplanetary magnetic field configuration and the solar wind flow[J]. Journal of Geophysical Re-search, 2005, 110(10): 12112-12142.
文章导航

/